Note

On the Condition $\sum_{n-1}^{\infty} n^{p-1} E_{n}^{*}(f)<\infty$
Maurice Hasson
Department of Mathematics, Emory University, Atlanta, Georgia 30322, U.S.A.
AND
Oved Shisha
Department of Mathematics, University of Rhode Island.
Kingston, Rhode Island 02881, U.S.A.
Received May 17. 1982

1

For every integer $k \geqslant 0$ let $C^{* k}$ denote the set of 2π-periodic real functions having a continuous k th derivative on $(-\infty, \infty)$. C^{*} will mean $C^{* 0}$ and $\|\|$ will denote the sup norm over $\left[-\pi, \pi \mid\right.$. For $n=1,2, \ldots$ and every $f \in C^{*}$ let

$$
E_{n}^{*}(f)=\min \left\|f-t_{n}\right\| .
$$

where the minimum is taken over all trigonometric polynomials t_{n} of order $\leqslant n$. Let p be a fixed integer $\geqslant 1$. Suppose that for some $f \in C^{*}$.

$$
\grave{n-1}_{\infty}^{n} n^{p-1} E_{n}^{*}(f)<\infty .
$$

Then $\mid 1$, Theorem 8 , p. $61 \mid f \in C^{* p}$. Thus if c_{1}, c_{2}, \ldots are positive numbers with

$$
\begin{equation*}
\frac{1}{n-1} c_{n}<\infty \tag{1}
\end{equation*}
$$

then $f \in C^{* p}$ whenever

$$
\begin{equation*}
f \in C^{*} \quad \text { and } \quad n^{p-1} E_{n}^{*}(f)=O\left(c_{n}\right) \tag{2}
\end{equation*}
$$

According to $\mid 2$, Sect. 18, Theorem $\mid,(1)$ is essential for the validity of the last statement. Namely, if

$$
\begin{equation*}
c_{1}, c_{2}, \ldots>0, \quad \sum_{n+1} c_{n}=\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(c_{n} / n^{p-1}\right)_{n .1}^{x} \text { is nonincreasing, } \tag{4}
\end{equation*}
$$

then there is an $f \notin C^{* \prime}$ satisfying (2).
Suppose (3) and

$$
\begin{equation*}
\left(n c_{n}\right)_{n-1}^{x} \text { is nonincreasing; } \tag{5}
\end{equation*}
$$

then (4) and hence there is an f as in the last sentence. The purpose of this note is to make a stronger statement, i.e..

Theorem. Assume (3) and (5). Then there exists an f satisfying (2) which does not have throughout $(-\infty, \infty) a(p-1)$ th derivative satisfying in $|-\pi, \pi|$ a Lipschitz condition.

We shall need the following
Lemma. Let f be a 2π-periodic real function for which $f^{(p)}{ }^{1)}$ exists on $(-\infty, \infty)$ and satisfies in $\left[-\pi, \pi \mid\right.$ a Lipschitz condition. For $n=1,2 \ldots$ let τ_{n} be a real trigonometric polynomial of order $\leqslant n$ for which $\left\|f-\tau_{n}\right\|=O\left(n^{\prime \prime}\right)$. Then $\left\|\tau_{n}^{(p)}\right\|_{n=1}^{\alpha}$ is bounded.

Proof of the Lemma. Ler r be the smallest integer $\geqslant(p+2) / 2$ and let n be a positive integer. Set

$$
\begin{aligned}
s_{n}(x) & \left.=(\sin \{(|n / r|+1) x / 2\}\{\sin (x / 2)\}\}^{1}\right)^{2 r}, & & \text { if }-\pi \leqslant x \leqslant \pi, x \neq 0, \\
& =(|n / r|+1)^{2 r}, & & \text { if } \quad x=0,
\end{aligned}
$$

so that s_{n} is continuous at 0 , and let

$$
\begin{array}{ll}
K_{n}(x)=s_{n}(x) / \int_{-\pi}^{\pi} s_{n}, & -\pi \leqslant x \leqslant \pi \\
I_{n}(x)=-\int_{-\pi}^{\pi} K_{n}(t) \sum_{k=1}^{p}(-1)^{k}\binom{p}{k} f(x+k t) d t, & -\infty<x<\infty \tag{6}
\end{array}
$$

$$
\begin{equation*}
\text { ON THE CONDITION } \sum_{n=1}^{\infty} n^{p-1} E_{n}^{*}(f)<\infty \tag{391}
\end{equation*}
$$

(| | denotes integral part). Then

$$
\begin{equation*}
\left\|f-I_{n}\right\| \leqslant M n^{1-p} \omega(1 / n) \leqslant M_{1} n^{-p} \tag{7}
\end{equation*}
$$

where ω is the modulus of continuity of $f^{(p-1)}, M$ and M_{1} are independent of $n \mid 1$, pp. 56-58|; and

$$
I_{n}^{(p-1)}(x) \equiv-\int_{-\pi}^{\pi} K_{n}(t) \sum_{k=1}^{p}(-1)^{k}\binom{p}{k} f^{(p-1)}(x+k t) d t .
$$

Furthermore, since $f^{(p-1)}$ satisfies a Lipschitz condition on ($-\infty, \infty$) and hence is almost everywhere differentiable there, we have there $\mid 3$, Sect. 39.1 s , p. 216|

$$
I_{n}^{(p)}(x)=-\int_{-\pi}^{\pi} K_{n}(t){\underset{k}{k}}_{p}^{p}(-1)^{k}\binom{p}{k} f^{(p)}(x+k t) d t .
$$

the integral being Lebesgue. Since

$$
\int_{-\pi}^{\pi}\left|K_{n}\right|=\int_{-\pi}^{\pi} K_{n}=1
$$

we have

$$
\begin{equation*}
\left\|I_{n}^{(p)}\right\| \leqslant M_{2}, \tag{8}
\end{equation*}
$$

M_{2} being independent of n.
Also

$$
K_{n}(t)=\sum_{k=0}^{n} a_{k}^{(n)} \cos k t, \quad-\pi \leqslant t \leqslant \pi
$$

where $a_{k}^{(n)}$ are real constants, and therefore by $(6), I_{n}(x)$ is a real trigonometric polynomial of order $\leqslant n|1, \mathrm{pp} .57-58|$.

By Bernshtein's inequality for trigonometric polynomials and (8), for $n=1,2, \ldots$,

$$
\begin{aligned}
\left\|\tau_{n}^{(p)}\right\| & \leqslant\left\|\tau_{n}^{(p)}-I_{n}^{(p)}\right\|+\left\|I_{n}^{(p)}\right\| \leqslant n^{p}\left\|\tau_{n}-I_{n}\right\|+M_{2} \\
& \leqslant n^{p}\left(\left\|f-\tau_{n}\right\|+\left\|f-I_{n}\right\|\right)+M_{2}
\end{aligned}
$$

which is bounded by hypothesis and (7).

3. Proof of the Theorem

Let

$$
f(x) \equiv \sum_{k-0}^{x} 5^{(1-p) k} c_{5^{k}} \cos 5^{k} x
$$

Observe that the series converges uniformly on $(-\infty, \infty)$ as, for $k=0,1,2, \ldots$,

$$
5^{(1-p) k} c_{5 k}=5^{k} c_{5 k} 5^{-p k} \leqslant c_{1} 5^{-p k}
$$

by (5).
Let n be an integer $\geqslant 1$. Define j by

$$
5^{j} \leqslant n<5^{j+1}, \quad j \text { an integer. }
$$

Then

$$
\left.\begin{array}{rl}
E_{n}^{*}(f) & \leqslant\left\|f(x)-\sum_{k=1}^{j} 5^{(1-p) k} c_{5 k} \cos 5^{k} x\right\|=\grave{k}_{j+1}^{3} 5^{k} c_{5 k} 5^{p k} \tag{9}\\
& \leqslant 5^{j+1} c_{5 j+1} \sum_{k=0}^{x} 5^{-p(j+1)} 5^{-p k}<5^{j+1} c_{5 j-1} n \sum_{0} 5^{p k} \\
& \leqslant \frac{5}{4} n c_{n} n^{-p} \leqslant \frac{5}{4} c_{1} n^{-p} .
\end{array}\right\}
$$

Hence (2).
Set $\tau_{n}(x) \equiv \sum_{k-0}^{j} 5^{(1-p) k} c_{s k} \cos 5^{k} x$ so that, as $n \rightarrow \infty$.

$$
\left\|f-\tau_{n}\right\|=O\left(n^{\prime \prime}\right)
$$

If p is odd, then, for every real $x,\left|\tau_{n}^{(p)}(x)\right|=\left|\sum_{k=0}^{j} 5^{k} c_{s k} \sin 5^{k} x\right|$ and since, for $k=0,1,2, \ldots, 5^{k}$ is congruent to $1(\bmod 4)$,

If p is even, then again $\left\|\tau_{n}^{(p)}\right\|=\sum_{k=0}^{j} 5^{k} c_{5 k}$. By (5), $\left(c_{n}\right)_{n}^{*}{ }_{1}$ is decreasing. By Cauchy's condensation test and (3), $\sum_{k-0} 5^{k} c_{5 k}=\infty$. Hence, for $j=0,1,2 \ldots$,

$$
\left\|\tau_{5^{i}}^{(p)}\right\|=\stackrel{j}{k}_{k-0} 5^{k} c_{5 k} \rightarrow \infty
$$

so that $\left\|\tau_{n}^{(p)}\right\|_{n=1}^{\alpha}$ is unbounded.

$$
\begin{equation*}
\text { ON THE CONDITION } \sum_{n=1}^{\infty} n^{p-1} E_{n}^{*}(f)<\infty \tag{393}
\end{equation*}
$$

If f had throughout $(-\infty, \infty)$ a $(p-1)$ th derivative satisfying in $|-\pi, \pi|$ a Lipschitz condition, then, by the lemma, $\left\|\tau_{n}^{(p)}\right\|_{n}^{\alpha_{1}}$, would be bounded.

Remark 1. Note that this $f \in C^{* p-1}$ as, by the last inequality in (9). $\sum_{n=1}^{\infty} n^{p-2} E_{n}^{*}(f)<\infty$.

Remark 2. The first $\leqslant \operatorname{sign}$ in (9) can be replaced by $=\mid 4$, Sect. 2.11.2. p. 77|.

References

1. G. G. Lorentz, "Approximation of Functions," Holt. New York, 1966.
2. S. N. Bernshtein, On the best approximation of continuous functions by polynomials of a given degree, in "Collected Works," Vol. I, translated by the U.S. Atomic Energy Commission, AEC-tr-3460, 1958. The original paper has appeared in the Communications of the Kharkov Mathematical Society in 1912.
3. E. J. McShane, "Integration," Princeton Univ. Press. Princeton, N.J.. 1944.
4. A. F. Timan, "Theory of Approximation of Functions of a Real Variable." MacMillan. New York. 1963.
